The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila.
نویسندگان
چکیده
Apical constriction is a major mechanism underlying tissue internalization during development. This cell constriction typically requires actomyosin contractility. Thus, understanding apical constriction requires characterization of the mechanics and regulation of actomyosin assemblies. We have analyzed the relationship between myosin and the polarity regulators Par-6, aPKC and Bazooka (Par-3) (the PAR complex) during amnioserosa apical constriction at Drosophila dorsal closure. The PAR complex and myosin accumulate at the apical surface domain of amnioserosa cells at dorsal closure, the PAR complex forming a patch of puncta and myosin forming an associated network. Genetic interactions indicate that the PAR complex supports myosin activity during dorsal closure, as well as during other steps of embryogenesis. We find that actomyosin contractility in amnioserosa cells is based on the repeated assembly and disassembly of apical actomyosin networks, with each assembly event driving constriction of the apical domain. As the networks assemble they translocate across the apical patch of PAR proteins, which persist at the apical domain. Through loss- and gain-of-function studies, we find that different PAR complex components regulate distinct phases of the actomyosin assembly/disassembly cycle: Bazooka promotes the duration of actomyosin pulses and Par-6/aPKC promotes the lull time between pulses. These results identify the mechanics of actomyosin contractility that drive amnioserosa apical constriction and how specific steps of the contractile mechanism are regulated by the PAR complex.
منابع مشابه
DRhoGEF2 Regulates Cellular Tension and Cell Pulsations in the Amnioserosa during Drosophila Dorsal Closure
Coordination of apical constriction in epithelial sheets is a fundamental process during embryogenesis. Here, we show that DRhoGEF2 is a key regulator of apical pulsation and constriction of amnioserosal cells during Drosophila dorsal closure. Amnioserosal cells mutant for DRhoGEF2 exhibit a consistent decrease in amnioserosa pulsations whereas overexpression of DRhoGEF2 in this tissue leads to...
متن کاملBazooka inhibits aPKC to limit antagonism of actomyosin networks during amnioserosa apical constriction.
Cell shape changes drive tissue morphogenesis during animal development. An important example is the apical cell constriction that initiates tissue internalisation. Apical constriction can occur through a phase of cyclic assembly and disassembly of apicomedial actomyosin networks, followed by stabilisation of these networks. Delayed negative-feedback mechanisms typically underlie cyclic behavio...
متن کاملIntegration of contractile forces during tissue invagination
Contractile forces generated by the actomyosin cytoskeleton within individual cells collectively generate tissue-level force during epithelial morphogenesis. During Drosophila mesoderm invagination, pulsed actomyosin meshwork contractions and a ratchet-like stabilization of cell shape drive apical constriction. Here, we investigate how contractile forces are integrated across the tissue. Reduci...
متن کاملLocal, cell-nonautonomous feedback regulation of myosin dynamics patterns transitions in cell behavior: a role for tension and geometry?
How robust patterns of tissue dynamics emerge from heterogeneities, stochasticities, and asynchronies in cell behavior is an outstanding question in morphogenesis. A clear understanding of this requires examining the influence of the behavior of single cells on tissue patterning. Here we develop single-cell manipulation strategies to uncover the origin of patterned cell behavior in the amnioser...
متن کاملDrac1 and Crumbs participate in amnioserosa morphogenesis during dorsal closure in Drosophila.
Dorsal closure of the Drosophila embryo involves morphological changes in two epithelia, the epidermis and the amnioserosa, and is a popular system for studying the regulation of epithelial morphogenesis. We previously implicated the small GTPase Drac1 in the assembly of an actomyosin contractile apparatus, contributing to cell shape change in the epidermis during dorsal closure. We now present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 137 10 شماره
صفحات -
تاریخ انتشار 2010